Two Remarks on Skew Tableaux

نویسنده

  • Richard P. Stanley
چکیده

This paper contains two results on the number fσ/τ of standard skew Young tableaux of shape σ/τ . The first concerns generating functions for certain classes of “periodic” shapes related to work of Gessel-Viennot and Baryshnikov-Romik. The second result gives an evaluation of the skew Schur function sλ/μ(x) at x = (1, 1/22k , 1/32k , . . . ) for k = 1, 2, 3 in terms of fσ/τ for a certain skew shape σ/τ depending on λ/μ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of the Robinson-schensted Correspondence for Oscillating and Skew Oscillating Tableaux

In this paper, we consider the Robinson-Schensted correspondence for oscillating tab-leaux and skew oscillating tableaux deened in 15] and 3]. First we give an analogue, for the oscillating tableaux, of the classical geometric construction of Viennot for standard tableaux ((16]). Then, we extend a construction of Sagan and Stanley ((10]), dealing with standard tableaux and skew tableaux, to ded...

متن کامل

Pii: 0097-3165(90)90066-6

We introduce several analogs of the Robinson-Schensted algorithm for skew Young tableaux. These correspondences provide combinatorial proofs of various identities involving f&,, the number of standard skew tableaux of shape L/p, and the skew Schur functions So..,,. For example, we are able to show bijectively that and 4 S;&)QdY)=C ~p;p(x)~~,p(Y) n (1-%Y,)Y. P 1. I It is then shown that these ne...

متن کامل

On the sign-imbalance of skew partition shapes

Let the sign of a skew standard Young tableau be the sign of the permutation you get by reading it row by row from left to right, like a book. We examine how the sign property is transferred by the skew Robinson-Schensted correspondence invented by Sagan and Stanley. The result is a remarkably simple generalization of the ordinary non-skew formula. The sum of the signs of all standard tableaux ...

متن کامل

Skew Tableaux, Lattice Paths, and Bounded Partitions

We establish a one to one correspondence between a set of certain bounded partitions and a set of two-rowed standard Young tableaux of skew shape. Then we obtain a formula for a number which enumerates these partitions. We give two proofs for this formula, one by applying the above correspondence, the other by using the reflection principle. Finally, we give another expression for this number i...

متن کامل

Standard Young tableaux for nite root systems

The study of representations of aane Hecke algebras has led to a new notion of shapes and standard Young tableaux which works for the root system of any nite Coxeter group. This paper is completely independent of aane Hecke algebra theory and is purely combinatorial. We deene generalized shapes and standard Young tableaux and show that these new objects coincide with the classical ones for root...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011